
Aim: Review counting techniques and use ${}^{n}C_{r}$ notation.

- 1. The group of friends from Activity 1; Alfred, Blanche, Caleb, Debbie and Ernie, have three tickets for the Ferris wheel.
 - a) List the 10 different groups of 3 that can use the tickets.
 - b) When the group of three is chosen how many ways can they line up for a photograph?
 - c) How many possible photographs of three of the friends are possible?
 - d) Explain how the figure of 10 possible groupings in a) can be calculated from your answers to b) and c).
 - e) Write 10 as an expression using factorial notation based upon your answer to d).
- 2. Frances and Greg join the group
 - a) List all possible groupings of three friends.

- b) When the group of three is chosen how many ways can they line up for a photograph?
- c) How many possible photographs of three of the friends are possible?
- d) Write the number of possible groupings as an expression using factorial notation.
- e) How many possible groupings are there for those who do <u>not</u> get a ride?
- 3. Use ClassPad to calculate the following:

c)
$$C_2^5$$
 d) $\frac{5!}{2! \times 3!}$

e)
$$C_3^7$$
 f) $\frac{P_3^7}{3!}$

g) C_4^7 h) $\frac{7!}{4!\times 3!}$

4. Generalise your results from Q's 1-3.

5. Describe how combinations are connected to Pascal's triangle. Hint: evaluate C_0^5 , C_1^5 , C_2^5 , C_3^5 , C_4^5 and C_5^5 . Then look at Pascal's triangle for a connection.

- 6. Which of the following statements are true?
 - a) The number of ways of leaving out five people from a group of seven is the same as the number of ways of selecting two.
 - b) $\binom{n}{r} = \binom{n}{n-r}$
 - c) $\binom{10}{6} + \binom{10}{7} = \binom{11}{7}$
 - d) $\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$
 - e) For those statements that are false provide a counter example. For those that are true provide a proof or justification.

Learning notes

Q's 1-3 are aimed at developing the connection between combinations and permutations by using specific examples.

Definitions: n! = n(n-1)(n-2)...1 ${}^{n}C_{r} \text{ or } {n \choose r} = \frac{n!}{(n-r)!r!} \text{ read as } n \text{ choose } r$

Where n choose r is the number of different ways of choosing r from a possible n.